Acid-Base Chemistry

This page describes the common definitions of acids and bases that you will encounter, in short, the terms "acid" and "base" describe the movement of protons (H^+) whereas the terms "nucleophile" and "electrophile" describe the movement of **electrons**

Nucleophile (Lewis base): electron donor

i.e. electron pairs (lone pairs or π electrons) are bases — same as the Bronsted examples

Predicting Acid-Base Reactions

Using the reaction shown below, this page describes the stepwise thought process for determining the products and extent of an acid-base reaction, as well as the reaction mechanism

1) Draw products of an acid-base reaction (conjugate acid and conjugate base)

Conjugate Acid: the product of the base accepting H^{\oplus}

Conjugate Base: the product of the acid donating H[®]

2) Compare pKas of the acid (reactant side) and conjugate acid (product side). Remember that stronger acids have <u>lower</u> pK_as.

3) Use the Lewis definition to illustrate the *mechanism* of the reaction.

Predicting relative acid strength without pK_a values

While a pK_a table is more conclusive, it is possible to predict relative acidities simply based upon molecular structure. In order to do this, four structural characteristics must be analyzed (in this order)

2) Resonance: Stabilized Conjugate Bases

Conjugate bases that are stabilized (for example, through resonance) correlate with stronger acids

3) Inductive Effects: Electron Withdrawing Effects

Electron-withdrawing groups (EWGs, e.g. halide) in proximity to a proton results in a stronger acid

4) Hybridization of C atom: Molecule only contains C-H

Hybridization of C ("s-character") stabilizes conjugate base (carbanion)

