Acid-Base Chemistry

1. The species shown below are all Lewis acids. Considering the individual bond dipoles, **draw a circle around any Lewis acidic atoms**. Which of the circled atoms are also Brønsted acids?

$$H_3C$$
 C
 O
 H
 $O=C=O$
 $H-N$
 H
 F
 B
 F

2. **Draw the conjugate base** for each of the following acids. Assume that deprotonation only occurs one time.

Acid	Conjugate Base
→ ⊕ OH ₂	
ОН	
HS OH	

3. **Draw the conjugate acid** of each of the following bases. Assume that protonation only occurs one time.

Base	Conjugate Acid
H—C≣C ^Θ	
ОН	

4. **Select the more acidic molecule in each pair below**. Then, provide a **brief explanation** of your reasoning (e.g. eN, bond length, resonance, hybridization, etc...)

Α.

Explanation:

В.

Explanation:

C.

Explanation:

ח

Explanation:

5. Using the process outlined on page 2 of the Acid-Base Core Concepts, **draw the products** of the following acid/base reactions and **determine which side of the reaction is favored at equilibrium**. In your own words, explain your selection.

Explanation:

Explanation:

6. The acid-base mechanisms below are incorrect. In your own words, explain why and draw correct arrow pushing mechanisms.

Explanation:

Explanation:

7. Hydroxide is often presented as a strong base, but in some reactions it is not strong enough. Given the pK_a values shown below, explain why the reaction below is disfavored in the forward reaction.

$$pK_a$$
 26 \rightarrow H + Θ_{OH} \rightarrow H₂O

Explanation:

If strong acids have stable conjugate bases, **weak acids have more reactive conjugate bases**. With this in mind, explain why NaNH₂ **is** an appropriate base for the reaction below.

$$pK_a$$
 26 \rightarrow NH₃

Explanation:

Using the example above, **select which base** (¹-OH or ¹-H) is reactive enough for deprotonating the most acidic proton in ethanol.