
Arrows

This worksheet should help reinforce the physical meaning of the curved-arrow reaction mechanisms you learn in organic chemistry 1.

Example

An acid-base reaction is shown with the curved-arrow mechanism. The table below describes the physical meaning of each arrow in the mechanism.

Arrow Bonds broken		Bonds formed	
1	none	O-H sigma bond	
2	O—H sigma bond	none	

Description of curved-arrow mechanism:

The first arrow indicates the use of a lone pair on the negatively charged oxygen atom (red) to deprotonate the H in the acid, forming a new O—H sigma bond

The second arrow indicates that the O—H sigma bond in the acid breaks and the electrons become a lone pair on the oxygen atom (green).

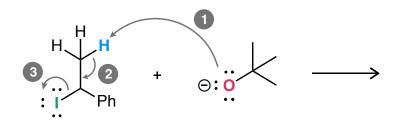
The irreverible arrow is used above because the reaction is highly favorable: reacting an acid with pKa of 4.7 and forming an acid with pKa of 14. Typically, going from something more reactive to less reactive (more stable) constitutes a favorable process.

1. S_N2 Reaction

An S_N^2 reaction is shown below with starting materials and products. Answer each item below.

- A. Provide the curved arrow mechanism
- B. Fill in the table with the meaning of each curved arrow using the example above as a guideline
- C. Describe the mechanism in your own words
- D. Describe the use of the irreversible or reversible forward reaction arrow

Arrow	Bonds broken	Bonds formed
1		
2		


Description of curved-arrow mechanism:

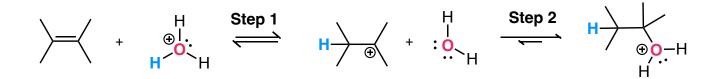
Use of irreversible reaction arrow: The forward reaction was described using an irreversible reaction arrow (→). Describe why.

2. E2 Reaction

A curved arrow mechanism for an E2 reaction is shown below and involves three arrows, labeled 1-3.

- A. Provide the curved arrow mechanism
- B. Fill in the table with the meaning of each curved arrow using the example above as a guideline
- C. Describe the mechanism in your own words
- D. Describe the use of the irreversible or reversible forward reaction arrow

Arrow	Bonds broken	Bonds formed
1		
2		
3		


Description of curved-arrow mechanism:

Use of irreversible reaction arrow: The forward reaction was described using an irreversible reaction arrow (→). Describe why.

3. Addition Reaction

Two steps of an addition reaction are shown below.

- A. Provide the curved arrow mechanism
- B. Fill in the table with the meaning of each curved arrow using the example above as a guideline
- C. Describe the mechanism in your own words
- D. Describe the use of the irreversible or reversible forward reaction arrow

Step 1			Step 2		
Arrow	Bonds broken	Bonds formed	Arrow	Bonds broken	Bonds formed
1			1		
2					

Description of curved-arrow mechanism in step 1:

Description of curved-arrow mechanism in step 2:

Use of reversible reaction arrow in step 1: Step 1 of the reaction above was described using an reversible reaction arrow (). Describe why.