Solvents in Organic Chemistry

Solvents are selected based on their ability to **dissolve species in solution**, which is largely due to similarities in structure between solvent and reactant.

Described below are common classes of solvents and the roles that solvents can play in addition to dissolving reactants.

Classes of Common Solvents

1) **Polar protic** (polar: **bond/molecular dipole**; protic: **hydrogen bonding**, H atoms bonded to O or N)

Solvents above dissolve other polar molecules through hydrogen bonding and dipole-dipole interactions

2) Polar aprotic (polar: bond/molecular dipole; aprotic: no H-bonding, H atoms bonded to C)

Solvents above dissolve other polar molecules through dipole-dipole interactions

3) Nonpolar (no significant bond dipoles, or all bond dipoles cancel)

Examples:

Role of Solvent

- 1. Solvents dissolve reactants and products Solubility rule of thumb: "like dissolves like"
- 2. Solvents can influence the rate of a reaction

In the S_N^2 reaction below, the choice of a polar **protic** solvent like CH_3OH slows the rate of the reaction because it effectively solvates (strong attraction) the nucleophile, thus keeping N_3^- from participating in the reaction

When using a polar **aprotic** solvent like CH_3CN for an S_N2 reaction, the lack of H-bonding in the solvent results in a weaker attraction to the nucleophile, therefore it is easier for N_3^{1-} to participate in the reaction and the reaction rate is faster.

3. Solvents can be involved in proton transfer

Example: E1 Dehydration

From this, we can say that the acid in solution in a mixture of strong acid and water is actually hydronium, H_3O^+

4. Solvents can stabilize reactive intermediates

Example:

ROH solvent is oriented such that the oxygen atom stabilizes the carbocation

Note: Dotted lines are showing attractive interactions that are not true covalent bonds

5. In rare situations, often with water, the solvent can act as a reactant

hydration of alkene

halohydrin formation

What if no solvent information is provided?

...then solvent is not important to the outcome of the reaction

Context clues can be used to identify solvent

Notable examples:

When strong acids are used (HX, H₂SO₄, etc...), H₂O is assumed to be the solvent

When alkoxide bases are used, the conjugate acid alcohol is the solvent

