Substitution and Elimination Reactions with R—X

The flow chart shown below can be used to identify which reaction mechanism ($S_N 2$ or E2) is likely, given your specific reactants and reaction conditions.

Scope of Lewis Base Strength in Bimolecular Reactions

If the **base** has a **conjugate acid** with a pK_a value higher than H₂O (14), then the Brønsted base is strong enough to initiate an E2 reaction

Curved Arrow Mechanisms for Bimolecular Substitution and Elimination

Curved-arrow mechanisms for *concerted* (*i.e.*, occur in a single step) substitution reactions (S_N^2) and elimination reactions (E2):

Impact of the Sterics of the Electrophile on S_N^2 and E2

As shown in the chart above, as the degree of substitution of the electrophile increases, E2 reactions are more likely to occur

Given that ethoxide is mildly basic (pK_a of ethanol ~ 17), it can participate in S_N^2 or E2 reactions, depending on the substitution of the electrophile

Impact of Base Strength on S_N2 and E2

In general, weak bases, like cyanide, are nucleophiles for S_N2 reactions whereas stronger bases like ethoxide or t-butoxide are bases in E2 reactions. This trend is especially impactful at 2° R—X electrophiles.

Substitution and Elimination Reactions with Alcohols (R-OH)

Although the -OH group of an alcohol is a poor leaving group, **alcohols can still undergo stepwise substitution** (S_N 1) and elimination reactions (E1) in the presence of strong acids.

Why Strong Acid?

Curved Arrow Mechanisms for Unimolecular Substitution and Elimination

Curved-arrow mechanisms for **step-wise** (*i.e.*, occur over multiple steps) substitution reactions (S_N^1) and elimination reactions (E1):

In both reactions, the first step involves protonation of the alcohol to "activate" it as a leaving group. Then, "water" leaves and a carbocation is formed.

How to Decide Between S_N1 and E1?

In general, this is determined by the conjugate base of the strong acid that was used. Remember that strong acids completely dissociate in H_2O .

Products in Substitution Reactions

In S_N1 reactions, there is always racemization of stereochemistry at the chiral center involved in the reaction

Recall that in S_N^2 reactions, there is always complete inversion of stereochemistry, resulting in the formation of a single stereoisomer

inversion only

Products in Elimination Reactions

In both **E1** and **E2** reactions, **both regioisomers and stereoisomers can form**. However, the reactions both typically favor the most substituted, *E* alkene as the major product

Multiple β -sites can react, producing alkenes at different positions in the molecule (regioisomers). In some cases, having two β -H's on a single site will generate two stereoisomers.

E2 reactions with multiple reactive $\boldsymbol{\beta}$ carbons

The reacting β -H must be antiperiplanar to the leaving group

E1 reactions with multiple reactive β carbons

Since carbocations are planar, deprotonation to form the alkene results in both *E* and *Z* isomers being formed (stereoisomers) for any and all β -sites with atleast one H atom

