Reduction and Oxidation

This Core Concept Sheet covers common reduction and oxidation reactions in organic chemistry.

Reduction is commonly described as a decrease in oxidation state for carbon atom(s). Often, this results in an **increase in the number of C**-**H bonds and/or** a **decrease in the number of C**-**O bonds**.

The table below shows the most common reductions you will see. It is important to recognize that $NaBH_4$ is a weaker reducing agent than $LiAIH_4$ and, as shown below, $NaBH_4$ does not reduce carboxylic acids, esters, amides, or nitriles.

Functional Group	Structure	Conditions for Reduction		Reduction Product		
aldehyde	RH	1. NaB <mark>H</mark> 4 2. H ₃ O+	or	1. LiAI <mark>H</mark> 4 2. H ₃ O ⁺		1º alcohol
ketone	R	1. NaB <mark>H</mark> ₄ 2. H ₃ O ⁺	or	1. LiAI <mark>H</mark> 4 2. H ₃ O ⁺		2º alcohol
carboxylic acid	R ОН	_		1. LiAI <mark>H</mark> 4 2. H ₃ O+		1º alcohol
ester		_		1. LiAI <mark>H</mark> 4 2. H ₃ O ⁺		1º alcohol
amide		_		1. LiAI <mark>H</mark> 4 2. H ₃ O ⁺		amine
nitrile	R—C <u></u> N	_		1. LiAI <mark>H</mark> 4 2. H ₃ O ⁺		1° amine

The table below shows the reduction of unsaturated carbon systems, such as alkynes, alkenes, and acylbenzenes. Note that $H_{2/}$ Pt are strongly reducing conditions capable of reducing all the the functional groups below.

Example Mechanism for Reduction of a Carbonyl

Oxidation is commonly described as an increase in oxidation state for carbon atom(s). Often, this results in a **decrease in the number of C**-**H bonds and/or** an **increase in the number of C**-**O bonds**.

The table below shows the most common oxidations you will see. Similar to the reduction conditions, we must recognize that $KMnO_4$ is a stronger oxidant than Swern or PCC oxidation. In some cases, only the stronger oxidant is suitable (see the benzylic C–H oxidation). In others (see the 1° alcohol oxidations), different oxidation conditions result in different products.

Example Mechanism for Oxidation of an Alcohol

