Summary
Alkanes are relatively unreactive and rarely involved in chemical reactions, but they nevertheless provide a useful vehicle for introducing some important general ideas. In this chapter, we’ve used alkanes to introduce the basic approach to naming organic compounds and to take an initial look at some of the three-dimensional aspects of molecules.
A functional group is a group of atoms within a larger molecule that has a characteristic chemical reactivity. Because functional groups behave in approximately the same way in all molecules where they occur, the chemical reactions of an organic molecule are largely determined by its functional groups.
Alkanes are a class of saturated hydrocarbons with the general formula CnH2n+2. They contain no functional groups, are relatively inert, and can be either straight-chain (normal) or branched. Alkanes are named by a series of IUPAC rules of nomenclature. Compounds that have the same chemical formula but different structures are called isomers. More specifically, compounds such as butane and isobutane, which differ in their connections between atoms, are called constitutional isomers.
Carbon–carbon single bonds in alkanes are formed by σ overlap of carbon sp3 hybrid orbitals. Rotation is possible around σ bonds because of their cylindrical symmetry, and alkanes therefore exist in a large number of rapidly interconverting conformations.
Newman projections make it possible to visualize the spatial consequences of bond rotation by sighting directly along a carbon–carbon bond axis. Not all alkane conformations are equally stable. The staggered conformation of ethane is 12 kJ/mol (2.9 kcal/mol) more stable than the eclipsed conformation because of torsional strain. In general, any alkane is most stable when all its bonds are staggered.